Датчик температуры: принцип работы, измерения и температурный диапазон

Какие бывают датчики температурыСовременное производство просто немыслимо без автоматизации различных технологических процессов. Начиная от атомной станции и заканчивая автомобилями, везде можно обнаружить элементы автоматического контроля и регулирования необходимых параметров. Давление, угловая и линейная скорости, температура и многие другие параметры необходимо контролировать для более эффективной работы всего производства или машины.

Среди общего многообразия контролируемых параметров около половины занимает измерение и контроль температуры. Причём одной из наиболее важных деталей всей системы является датчик. Исходя из того, что условия и диапазоны температур могут сильно варьироваться, датчики и первичные преобразователи исполняются с различными свойствами и качествами в зависимости от технологических требований.

Сам по себе датчик измерения температуры является устройством, способным получать измеряемую величину и преобразовывать её в сигнал для последующей обработки и регулировании контролирующим прибором. Проще говоря, он является преобразователем одной величины (температуры) в другую величину (электрический ток, сопротивление), которую способен обработать прибор (к примеру, регулятор температуры) и на основании полученных данных выполнить действия, для которых создаётся сам этот прибор. К примеру, при достижении температуры выше заданной прибор может отключить исполнительный механизм для остановки источника (среды) нагрева.

Виды датчиков температуры

Как работают датчики температурыВвиду того что условия и диапазоны измерений для разных задач могут сильно отличаться, а требования к измерению различных температурных параметров быть разными, соответственно, и для выполнения тех или иных задач термопреобразователь должен соответствовать этим условиям и определённым требованиям. Поэтому они могут быть разными и использовать в работе различные свойства материалов. Таким образом, датчики бывают:

  • Полупроводниковые;
  • Терморезистивные;
  • Акустические;
  • Термоэлектрические;
  • Пьезоэлектрические;
  • Пирометры.

Коротко опишем особенности каждого из них, чтобы можно было представлять, в каких случаях необходимо использовать тот или иной прибор.

Полупроводниковые термоэлектрические

Термопреобразователи этого типа востребованы в производствах, так как являются недорогими и довольно точными приборами с низкой погрешностью. Под воздействием температуры такой датчик регистрирует изменения в свойствах p-n перехода. Здесь может использоваться практически любой диод или же биполярный транзистор. Высокая точность полупроводниковых термодатчиков достигается за счёт зависимости напряжения на транзисторе от абсолютной температуры.

Терморезистивные термоэлектрические преобразователи

Как работают термоэлектрические преобразователи - датчики температурыОсновными положительными сторонами подобных термодатчиков является их долговечность, стабильность и высокая чувствительность. Они прекрасно вписываются практически в любую схему.

Работа таких термопреобразователей основывается на изменении сопротивления под действием температуры на проводник или полупроводник. Проще говоря, они содержат в своей конструкции терморезистор, который реагирует на изменение замеряемой среды.

В зависимости от материала, используемого в терморезистивных термодатчиках, их разделяют на:

  1. Кремниевые резистивные, которые отличаются долговременной стабильностью и высокой точностью.
  2. Резистивные детекторы температуры, отличающиеся высокой стабильностью, прочностью и точностью. В основе их работы заложена способность металлов изменять своё сопротивление при воздействии температуры. Чаще в таких датчиках используют платину или медь, а при контроле особо высоких температур — вольфрам. Единственным их недостатком является относительно высокая стоимость.
  3. Работа термисторов основана на использовании металлооксидных соединений. Применяют их лишь для замеров абсолютных температур. Основным из минусов можно выделить необходимость калибровки и недолговечность.

Акустические бесконтактные устройства

Как работают бесконтактные датчикиТакой тип температурного датчика применяется преимущественно для измерения высоких температур. Принцип действия их основан на изменении характеристик звука при различных температурах. Состоит такой термодатчик из приёмника и излучателя. Звук, проходя через исследуемую среду, попадает в приёмник, где фиксируются его параметры, и на их основе определяется температура.

Акустические термодатчики часто используются в медицине и там, где невозможно измерить температуру контактными способами. Одним из основных их недостатков является низкая точность измеряемых температур и высокая погрешность вследствие дополнительных особенностей.

Термоэлектрические датчики

Термоэлектрические датчики, или, проще говоря, термопары отличаются широким спектром измеряемых показателей — от -200 до 2200 градусов Цельсия. При этом их возможности зависят от использованных материалов. Так, термопары из неблагородных металлов позволяют измерять температуру до 1100 °C, с благородными до 1600 °C, а для замера особо высоких терморежимов используются термопары с тугоплавкими металлами типа вольфрама.

Принцип работы термоэлектрических датчиков основан на эффекте Зеебека, т. е. используются спаи разнородных металлов, образующих замкнутый контур, в котором возникает электрический ток, когда места спаев имеют различную температуру. Состоит термопара из двух концов: рабочий и свободный. Первый погружается непосредственно в рабочую среду, а второй нет. Таким образом, возникает разность температур, что отображается в виде выходного напряжения, которое фиксируется мультивольтметром, зачастую входящим в комплект с термоэлектрическим датчиком.

Пьезоэлектрические кварцевые приборы

Датчики измерения температуры - пьезоэлектрическиеПринцип работы датчика температуры пьезоэлектрического основан на использовании кварцевого пьезорезонатора. Используемый в нём пьезоматериал исполняет роль резонатора. Когда на него подаётся электрический ток, то этот материал начинает колебаться при воздействии разных терморежимов, и частота колебаний также изменяется, что и положено в основу пьезоэлектрических датчиков.

Бесконтактные термопреобразователи пирометры

Бесконтактные датчики, способные фиксировать тепловое излучение от нагретых тел, называются пирометрами. Удобство подобных приборов заключается в том, что нет необходимости помещать его непосредственно в среду. Однако без прямого контакта точность их показаний относительно низка, ведь здесь могут присутствовать побочные явления, влияющие на показания.

Существует три типа пирометров:

  1. Как работает пирометр - измерение температурыИнтерферометрические пирометры испускают два луча, которые проходят один через среду, а второй является контрольным. Два этих луча попадают на кремниевый чувствительный элемент, после чего сравнивается преломление и длина лучей, непосредственно зависящие от нагрева среды.
  2. Флуоресцентные термодатчики работают по более сложному принципу: на поверхность, где необходимо замерить количество тепла, наносятся компоненты на основе фосфора. После этого объект подвергается ультрафиолетовому импульсному излучению, в результате чего происходят определённые реакции, а излучение подвергается анализу.
  3. Датчики, которые содержат растворы, способные менять окраску под воздействием температур. Хлорид кобальта, применяемый в подобных пирометрах, при контакте с измеряемой средой способен изменять цветовой спектр в зависимости от степени нагрева. Таким образом, величина света, проходящего через раствор, позволяет измерять необходимые термопараметры.

Правила выбора

Все вышеперечисленные датчики превосходно выполняют свои функции в заданных пределах. Однако нужно понимать, что выбирать и использовать их необходимо исходя из требований в конкретно взятом случае.

Поэтому при выборе того или иного термопреобразователя стоит уделять внимание следующим моментам:

  1. Величина температурного диапазона.
  2. Возможность погрузить датчик в измеряемую среду. Если такая возможность отсутствует, то стоит прибегнуть к помощи пирометров или акустических датчиков.
  3. Условия измерения являются одним из наиболее важных моментов при выборе датчика. Здесь стоит учитывать не только агрессивность среды, но и такие параметры, как: давление, влажность и т. д. Поэтому выбирать стоит либо бесконтактные датчики, либо в коррозиестойких корпусах.
  4. Природа выходного сигнала всегда также должна учитываться. Ведь одни термопреобразователи могут сразу пересчитать сигнал в градусы, а другие выдают его лишь в величине тока.
  5. Некоторые датчики довольно нестабильны и недолговечны, что также стоит брать во внимание. Поэтому если требуется долгая работа без замены и калибровки, то этот нюанс также должен быть учтён.
  6. Нелишним будет при выборе датчика под определённые потребности обращать внимание и на время срабатывания, разрешение и погрешность, рабочее напряжение питания, тип корпуса.

Учтя все вышеперечисленные нюансы, можно подобрать датчик, полностью соответствующий по своим характеристикам в отдельно взятой ситуации и для конкретно поставленных задач.

Оцените статью
(голосов: 48, среднее: 4.8 из 5)
Рекомендуем почитать
Комментарии к статье