Что такое диод, принцип действия и работа в схеме

Понятие диода и его особенности Диод — это элемент, имеющий различную проводимость. Такое его свойство имеет применение в различных электротехнических и радиоэлектронных схемах. На его основе создаются устройства, имеющие применение в различных областях.

Типы диодов: электровакуумные и полупроводниковые. Последний тип в настоящее время применяется в подавляющем большинстве случаев. Никогда не будет лишним знать о том, как работает диод, для чего он нужен, как обозначается на схеме, какие существуют типы диодов, применение диодов разных видов.

Электровакуумные диоды

Приборы этого типа выполнены в виде электронных ламп. Лампа выглядит как стеклянный баллон, внутрь которого помещены два электрода. Один из них анод, другой катод. Они находятся в вакууме. Конструктивно анод выполнен в виде тонкостенного цилиндра. Внутри расположен катод. Он имеет обычно цилиндрическую форму. Изолированная нить накала проложена внутри катода. Все элементы имеют выводы, которые соединены со штырьками (ножками) лампы. Ножки лампы выведены наружу.

Принцип работы

При прохождении электрического тока по спирали она нагревается и разогревает катод, внутри которого находится. С поверхности разогретого катода электроны, покинувшие его, без дополнительного ускоряющего поля накапливаются в непосредственной близости от него. Часть из них затем обратно возвращается на катод.

При подаче на анод положительного напряжения электроны, испускаемые катодом, устремляются к нему, создавая анодный ток электронов.

Катод обладает пределом эмиссии электронов. При достижении этого предела анодный ток стабилизируется. Если на анод подать небольшое отрицательное напряжение по отношению к катоду, то электроны прекратят своё движение.

Материал катода, из которого он изготовлен, обладает высокой степенью эмиссии.

Вольт- амперная характеристика (ВАХ)

ВАХ диодов этого типа графически показывает зависимость тока анода от прямого напряжения, приложенного к выводам катода и анода. Она состоит из трёх участков:

  • Медленное нелинейное нарастание тока;
  • Рабочая часть характеристики;
  • Область насыщения тока анода.

Нелинейный участок начинается после области отсечки анодного тока. Его нелинейность связана с небольшим положительным потенциалом катода, который покинули электроны при его разогреве нитью накала.

Активный участок определяет из себя почти вертикальную линию. Он характеризует зависимость анодного тока от возрастающего напряжения.

Участок насыщения представляет собой линию постоянного значения тока анода при увеличивающемся напряжении между электродами лампы. Электронную лампу на этом участке можно сравнить с проводником электрического тока. Эмиссия катода достигла своего наивысшего значения.

Полупроводниковые диоды

Однофазный выпрямительСвойство p — n перехода пропускать электрический ток одного направления нашло применение при создании приборов этого типа. Прямое включение — это подача на n -область перехода отрицательного потенциала, по отношению к p -области, потенциал которой положительный. При таком включении прибор находится в открытом состоянии. При изменении полярности приложенного напряжения он окажется в запертом состоянии, и ток сквозь него не проходит.

Классификацию диодов можно вести по их назначению, по особенностям изготовления, по типу материала, используемого при его изготовлении.

В основном для изготовления полупроводниковых приборов используются пластины кремния или германия, которые имеют электропроводность n -типа. В них присутствует избыток отрицательно заряженных электронов.

Применяя разные технологии изготовления, можно на выходе получить точечные или пластинчатые диоды.

При изготовлении точечных приборов к пластинке n -типа приваривают заострённый проводник (иглу). На его поверхность нанесена определённая примесь. Для германиевых пластин игла содержит индий, для кремниевых пластин игла покрыта алюминием. В обоих случаях создаётся область p — n перехода. Её форма напоминает полусферу (точку).

Для плоскостных приборов применяют метод диффузии или сплавления. Площадь переходов, получаемых таким методом, варьируется в широких пределах. От её величины зависит в дальнейшем назначение изделия. К областям p — n перехода припаивают проволочки, которые в виде выводов из корпуса готового изделия используют при монтаже различных электрических схем.

На схемах полупроводниковые диоды обозначаются в виде равностороннего треугольника, к верхнему углу которого присоединена вертикальная черта, параллельная его основанию. Вывод черты называется катодом, а вывод основания треугольника анодом.

Прямым называется такое включение, при котором положительный полюс источника питания соединён с анодом. При обратном включении «плюс» источника подключается к катоду.

Вольт- амперная характеристика

ВАХ определяет зависимость тока, протекающего через полупроводниковый элемент, от величины и полярности напряжения, которое приложено к его выводам.

В области прямых напряжений выделяют три области: небольшого прямого тока и прямого рабочего тока через диод. Переход из одной области в другую происходит при достижении прямым напряжением порога проводимости. Эта величина составляет порядка 0,3 вольт для германиевых диодов и 0,7 вольт для диодов на основе кремния.

При приложении к выводам диода обратного напряжения ток через него имеет очень незначительную величину и называется обратным током или током утечки. Такая зависимость наблюдается до определённого значения величины обратного напряжения. Оно называется напряжением пробоя. При его превышении обратный ток нарастает лавинообразно.

Предельные значения параметров

Для полупроводниковых диодов существуют величины их параметров, которые нельзя превышать. К ним относятся:

  • Максимальный прямой ток;
  • Максимальное обратное напряжение пробоя;
  • Максимальная мощность рассеивания.

Полупроводниковый элемент может выдержать прямой ток через него ограниченной величины. При его превышении происходит перегревание p-n перехода и выход его из строя. Наибольший запас по этому параметру имеют плоскостные силовые приборы. Величина прямого тока через них может достигать десятков ампер.

Превышение максимального значения напряжения пробоя может превратить диод, имеющий однонаправленные свойства, в обычный проводник электрического тока. Пробой может иметь необратимый характер и варьируется в широких пределах, в зависимости от конкретного используемого прибора.

Мощность — это величина, напрямую зависящая от тока и напряжения, которое приложено при этом к выводам диода. Как и превышение максимального прямого тока, превышение предельной мощности рассеивания приводит к необратимым последствиям. Диод просто выгорает и перестаёт выполнять своё предназначение. Для предотвращения такой ситуации силовые приборы устанавливают приборы на радиаторы, которые отводят (рассеивают) избыток тепла в окружающую среду.

Виды полупроводниковых диодов

Свойство диода пропускать ток в прямом направлении и не пропускать его в обратном нашло применение в электротехнике и радиотехнике. Разработаны и специальные виды диодов для выполнения узкого круга задач.

Выпрямители и их свойства

Что такое диод Их применение основано на выпрямительных свойствах этих приборов. Их используют для получения постоянного напряжения путём выпрямления входного переменного сигнала.

Одиночный выпрямительный диод позволяет получить на его выходе пульсирующее напряжение положительной полярности. Используя их комбинацию, можно получить форму выходного напряжения, напоминающую волну. При использовании в схемах выпрямителей дополнительных элементов, таких как электролитические конденсаторы большой емкости и катушки индуктивности с электромагнитными сердечниками (дроссели), на выходе устройства можно получить постоянное напряжение, напоминающее напряжение гальванической батареи, столь необходимое для работы большинства аппаратуры потребителя.

Полупроводниковые стабилитроны

Эти диоды имеют ВАХ с обратной ветвью большой крутизны. То есть, приложив к выводам стабилитрона напряжение, полярность которого обратная, можно с помощью ограничительных резисторов ввести его в режим управляемого лавин пробоя. Напряжение в точке лавинного пробоя имеет постоянное значение при значительном изменении тока через стабилитрон, величину которого ограничивают в зависимости от применённого в схеме прибора. Так получают эффект стабилизации выходного напряжения на нужном уровне.

Технологическими операциями при изготовлении стабилитронов добиваются различных величин напряжения пробоя (напряжения стабилизации). Диапазон этих напряжений (3−15) вольт. Конкретное значение зависит от выбранного прибора из большого семейства стабилитронов.

Принцип работы детекторов

Для детектирования высокочастотных сигналов применяют диоды, изготовленные по точечной технологии. Задача детектора состоит в том, чтобы ограничить одну половину модулированного сигнала. Это позволяет в последующем с помощью высокочастотного фильтра оставить на выходе устройства только модулирующий сигнал. Он содержит звуковую информацию низкой частоты. Этот метод используется в радиоприёмных устройствах, принимающих сигнал, модулированный по амплитуде.

Особенности светодиодов

Эти диоды характеризуются тем, что при протекании через них тока прямого направления кристалл испускает поток фотонов, которые являются источником света. В зависимости от типа кристалла, применённого в светодиоде, спектр света может находиться как в видимом человеческим глазом диапазоне, так и в невидимом. Невидимый свет — это инфракрасное или ультрафиолетовое излучение.

При выборе этих элементов необходимо представлять цель, которую необходимо достигнуть. К основным характеристикам светодиодов относятся:

  • Потребляемая мощность;
  • Номинальное напряжение;
  • Ток потребления.

Ток потребления светодиода, применяемого для индикации в устройствах широкого применения, не более 20 мА. При таком токе свечение светодиода является оптимальным. Начало свечения начинается при токе, превышающем 3 мА.

Номинальное напряжение определяется внутренним сопротивлением перехода, которое является величиной непостоянной. При увеличении тока через светодиод сопротивление постепенно уменьшается. Напряжение источника питания, используемое для питания светодиода, необходимо применять не меньше напряжения, указанного в паспорте на него.

Потребляемая мощность — это величина, зависящая от тока потребления и номинального напряжения. Она увеличивается при увеличении величин, её определяющих. Следует учесть, что мощные световые диоды могут иметь в своём составе 2 и даже 4 кристалла.

Перед другими осветительными приборами светодиоды имеют неоспоримые преимущества. Их можно перечислять долго. Основными из них являются:

  • Высокая экономичность;
  • Большая долговечность;
  • Высокий уровень безопасности из-за низких питающих напряжений.

К недостатку их эксплуатации относится необходимость наличия дополнительного стабилизированного источника питания постоянного тока, а это увеличивает стоимость.