Принцип действия и устройство синхронного двигателя

Принцип действия синхронного двигателяПринцип действия синхронного двигателя выглядит практически так же, как и асинхронного. Однако у этого типа силовых установок имеются существенные отличия и особенности. И хоть доля асинхронных агрегатов в промышленности составляет 96% от общего количества электродвигателей, другие варианты, включая синхронный, тоже нашли своих потребителей.

Основные отличия

В основном синхронные и асинхронные двигатели мало чем отличаются друг от друга. Ключевым отличием первых моделей является то, что вращение якоря осуществляется с такой же скоростью, как и вращение магнитного потока. При этом внутри установки встроена проволочная обмотка, передающая переменное напряжение, а не короткозамкнутый ротор, как у асинхронных устройств. Также отдельные конструкции оборудованы постоянными магнитами, но они существенно повышают стоимость двигателя.

При увеличении нагрузки скорость вращения ротора остается прежней. Именно такая особенность характеризует эту разновидность силовых установок. Ключевое требование к таким машинам выглядит следующим образом: количество полюсов у движущегося магнитного поля должно соответствовать числу полюсов электромагнита на роторе.

Конструкция синхронного устройства

Принцип работы и устройство синхронных машин остаются понятными даже для неопытных потребителей. К ключевым составляющим системы относят следующие узлы:

  1. Обзор синхронного двигателяСтатор — представляет собой неподвижную часть установки, на которой расположено три обмотки. Они соединены по схеме «звезда» или «треугольник». В качестве материала для изготовления статора используются пластины из суперпрочной электротехнической стали.
  2. Ротор — подвижный элемент двигателя, оснащенный обмоткой. Во время работы установки эта обмотка пропускает определенное напряжение.

Принцип работы синхронного двигателя

Между зафиксированной и подвижной частью системы находится небольшая воздушная прослойка, гарантирующая сбалансированную работу мотора и беспрепятственное воздействие магнитного поля на ключевые составляющие агрегата. Также в двигателе установлены подшипники, необходимые для вращения ротора, и клеммная коробка. Последняя находится в верхней части механизма.

Принцип работы

Изучая принцип работы синхронного двигателя, важно понимать, что, как и остальные разновидности силовых установок, они преобразуют один тип энергии в другой. Простыми словами, встроенные механизмы делают из электрической энергии механическую, а вся работа происходит по такому алгоритму:

  1. Как используются синхронные двигателиСквозь обмотку на статоре пропускается переменное напряжение, в результате чего происходит образование магнитного поля.
  2. Затем аналогичное напряжение подается на роторные обмотки, что тоже создает магнитное поле. При наличии в конструкции постоянных магнитов такое поле имеется по умолчанию.
  3. При столкновении двух магнитных полей происходит их противодействие друг другу, т. е. одно толкает другое. Именно такой принцип вызывает передвижение ротора, помещенного на подшипники.

Зная, как устроен и работает синхронный двигатель, остается правильно распределить его энергию и использовать в нужных целях. Однако производительность и КПД системы будут максимальными только в том случае, если удастся вывести ее в нормальный режим работы.

Устройство генераторов

Существует обратный вариант синхронных двигателей — синхронные генераторы. Они работают немного иначе:

  1. Запуск генератораОбмотка неподвижного статора не пропускает напряжение. Наоборот, с нее оно снимается.
  2. Сквозь роторную обмотку подается переменное напряжение, при этом расход электрической энергии совсем небольшой.
  3. Движение генератора обусловлено дизельным или бензиновым двигателем. Также его может раскручивать сила воды или ветра.
  4. В статорной обмотке происходит индукция ЭДС, а на концах появляется разность потенциала. Это объясняется движущимся магнитным полем вокруг ротора.

Но в любом случае необходимо осуществить стабилизацию напряжения на выходе генератора. Это делается соединением роторной обмотки с источником напряжения.

В зависимости от конструктивных особенностей ротор может быть оборудован постоянными или электрическими магнитами или так называемыми полюсами. Что касается индукторов, то в синхронных установках они бывают:

  1. Явнополюсными.
  2. Неявнополюсными.

Отличаются эти типы друг от друга только взаимным расположением полюсов. Чтобы снизить сопротивление магнитного поля и улучшить проникновение тока, механизм оснащают сердечниками, которые выполнены из ферромагнетиков. Сердечники находятся и в роторе, и в статоре, а для их изготовления задействуется исключительно электротехническая сталь. Дело в том, что этот материал содержит в себе большое количество кремния, существенно снижающего вихревые токи и улучшающего электрическое сопротивление сердечника.

Запуск установки

Сфера применения синхронного двгателяПри использовании синхронных двигателей возникает масса трудностей на этапе их запуска. Из-за этого они не пользуются особой популярностью и уступают асинхронным вариантам.

С момента появления на рынке работа синхронных агрегатов обеспечивалась специальным асинхронником, который механически соединялся с остальными узлами. По сути, ротор разгонялся до нужной частоты с помощью второго типа моторов. Современные асинхронники не нуждаются в подключении дополнительных механизмов, и все, что требуется для их работы, — соответствующее напряжение для статорной обмотки.

Генераторы синхронные

Как только система обеспечит нужную скорость вращения, разгонный двигатель будет отключен. При этом магнитные поля из электрического мотора выведут его на работу в синхронном режиме. Чтобы разогнать установку, придется задействовать еще один мотор мощностью 10% от мощности синхронного двигателя. При разгоне электродвигателя на 1 кВт используют разгонную систему мощностью 100 Вт. Как утверждают специалисты, таких показателей вполне хватает для сбалансированной работы машины в холостом режиме или с небольшой нагрузкой.

Сферы применения

Синхронные и асинхронные двигателиСинхронный электродвигатель представляет собой важное изобретение для различных направлений промышленности. Но из-за сложной конструкции и высокой стоимости оборудования его используют в редких случаях.

Сферы применения электрических моторов синхронного типа очень ограничены. В большинстве случаев установку применяют для повышения показателей мощности в энергосистеме, что обусловлено их способностью функционировать при любых коэффициентах мощности и отличной экономичностью.

Устройства востребованы для тех условий, где скорость вращения едва достигает 500 оборотов в минуту и появляется необходимость поднять мощность. В настоящее время их активно внедряют в поршневые насосы, компрессорные установки, прокатные станки и другие системы.

Оцените статью
(голосов: 60, среднее: 4.8 из 5)
Рекомендуем почитать
Комментарии к статье