При ремонте или радиоконструировании часто приходится сталкиваться с таким элементом, как конденсатор. Его главной характеристикой является ёмкость. Из-за особенностей устройства и режимов работы выход из строя электролитов становится одной из основных причин неисправностей радиоаппаратуры. Для определения ёмкости элемента используются разные приборы для проверки. Их несложно приобрести в магазине, а можно изготовить и самому.
Физическое определение конденсатора
Конденсатор — электрический элемент, служащий для накопления заряда или энергии. Конструктивно радиоэлемент представляет собой две пластины, выполненные из токопроводящего материала, между которыми располагается слой диэлектрика. Токопроводящие пластины называются обкладками. Они не связаны между собой общим контактом, но при этом каждая имеет собственный вывод.
Конденсаторы имеют многослойный вид, в них слой диэлектрика чередуется со слоями обкладок. Они представляют собой цилиндр или параллелепипед с закруглёнными углами. Основной параметр электрического элемента — это ёмкость, единицей измерения которой является фарада (F, Ф). На схемах и в литературе радиодеталь обозначается латинской буквой C. После символа указывается порядковый номер на схеме и значение номинальной ёмкости.
Так как одна фарада — это довольно большая величина, то реальные значения ёмкости конденсатора значительно ниже. Поэтому при записи принято использовать условные сокращения:
- П — пикофарада (pF, пФ);
- Н — нанофарада (nF, нФ);
- М — микрофарада (mF, мкФ).
Принцип работы
Принцип действия радиодетали зависит от вида электрической сети. При подключении к выводам обкладок источника постоянного тока носители заряда попадают на токопроводящие пластины конденсатора, где происходит их накопление. Вместе с тем на выводах обкладок появляется разность потенциалов. Её значение увеличивается до тех пор, пока не достигнет величины, равной источнику тока. Как только это значение выровняется, на обкладках перестаёт накапливаться заряд, а электрическая цепь разрывается.
В сети с переменным током конденсатор представляет собой сопротивление. Его величина связана с частотой тока: чем она выше, тем ниже сопротивление и наоборот. При воздействии на радиоэлемент переменной силы тока происходит накопление заряда. Со временем ток заряда уменьшается и пропадает полностью. Во время этого процесса на обкладках устройства концентрируются заряды разных знаков.
Диэлектрик, проложенный между ними, препятствует их перемещению. В момент смены полуволны происходит разряд конденсатора через нагрузку, подключённую к его выводам. Возникает ток разряда, то есть в электрическую цепь начинает поступать накопленная радиоэлементом энергия.
Конденсаторы применяются практически в любой электронной схеме. Они служат элементами фильтра для преобразования пульсаций тока и отсечения различных частот. Кроме этого, они компенсируют реактивную мощность.
Характеристики и виды
Измерения параметров конденсаторов связаны с нахождением величин их характеристик. Но среди них наиболее важной является ёмкость, которая обычно и измеряется. Эта величина обозначает количество заряда, которое может накопить радиоэлемент. В физике электроёмкостью называют величину, равную отношению заряда на любой обкладке к разности потенциалов между ними.
При этом ёмкость конденсатора зависит от площади обкладок элемента и толщины диэлектрика. Кроме ёмкости радиоприбор характеризуется также полярностью и величиной внутреннего сопротивления. Применяя специальные приборы, эти величины также можно измерить. Сопротивление устройства влияет на саморазряд элемента. Кроме этого, к основным характеристикам конденсатора относят:
- Сопротивление утечки. Это внутренний импеданс, через который происходит разряд конденсатора, неподключенного к внешней цепи.
- Эквивалентную индуктивность. Это паразитная характеристика, влияющая на работу элемента на высоких частотах.
- Эквивалентное последовательное сопротивление (ESR). Состоит из обобщённого сопротивления выводов и обкладок, представляется как резистор, подключённый последовательно с конденсатором.
Классифицируются конденсаторы по разным критериям, но в первую очередь их разделяют по типу диэлектрика. Он может быть газообразным, жидким и твёрдым. Чаще всего в качестве него используются стекло, слюда, керамика, бумага и синтетические плёнки. Кроме того, конденсаторы различаются по способности изменения величины ёмкости и могут быть:
- Постоянными. Относящиеся к этому виду конденсаторы обладают постоянным значением ёмкости.
- Переменными. К ним относятся радиоэлементы, величину ёмкости которых можно изменять в процессе работы устройства. Изменение происходит за счёт смены температурного режима, электрических параметров цепи и механических методов.
- Построечными. Позволяют изменять ёмкость при настройке аппаратуры, при этом элемент не должен быть подключён к источнику питания.
Также в зависимости от назначения конденсаторы бывают общего и специального назначения. Первого вида приборы являются низковольтными, а второго — импульсными, пусковыми и т. д. Но независимо от вида и назначения принцип измерения их параметров идентичный.
Приборы для измерения
Для измерения параметров конденсаторов используются как специализированные приборы, так и общего применения. Измерители ёмкости по своему типу разделяют на два вида: цифровые и аналоговые. Специализированные устройства могут измерить ёмкость элемента и внутреннее его сопротивление. Простым тестером обычно диагностируется только пробой диэлектрика или большая утечка. Кроме этого, если тестер многофункциональный (мультиметр), то им можно измерить и ёмкость, но обычно предел его измерения невысокий.
Таким образом, в качестве прибора для проверки конденсаторов можно использовать:
- ESR или RLC-метр;
- мультиметр;
- тестер.
При этом диагностику элемента прибором, относящемся к первому типу, можно проводить без выпаивания из схемы. Если же используется второй или третий тип, то элемент или хотя бы один из его выводов необходимо от неё отсоединить.
Использование ESR-метра
Измерение параметра ESR очень важно при исследовании конденсатора на работоспособность. Дело в том, что почти вся современная техника является импульсной, использующей в своей работе высокие частоты. Если эквивалентное сопротивление конденсатора велико, то на нём происходит выделение мощности, а это вызывает нагрев радиоэлемента, приводящий к его деградации.
Конструктивно специализированный измеритель представляет собой корпус с жидкокристаллическим экраном. В качестве его источника питания используется батарейка типа КРОНА. В приборе предусмотрено два разъёма разного цвета, к которым подключаются щупы. Красного цвета щуп считается положительным, а чёрного — отрицательным. Это сделано для того, чтобы можно было правильно проводить измерения полярных конденсаторов.
Перед измерением ESR сопротивления радиодеталь необходимо разрядить, иначе возможен выход прибора из строя. Для этого выводы конденсатора замыкаются сопротивлением порядка одного килоома на короткое время.
Непосредственно измерение происходит путём соединения выводов радиодетали со щупами прибора. В случае электролитического конденсатора необходимо соблюдать полярность, то есть соединять плюс с плюсом, а минус с минусом. После этого прибор включается, и через некоторое время на его экране появляются результаты измерения сопротивления и ёмкость элемента.
Следует отметить, что основная масса таких приборов изготавливается в Китае. В основе их действия лежит использование микроконтроллера, работой которого управляет программа. При измерении контроллер сравнивает сигнал, прошедший через радиоэлемент, с внутренним и на основании различий по сложному алгоритму выдаёт данные. Поэтому точность измерения таких приборов зависит в основном от качества комплектующих, используемых при их изготовлении.
При измерении ёмкости можно также воспользоваться измерителем иммитанса. По своему виду он похож на ESR-метр, но может дополнительно измерять индуктивность. Принцип его действия основан на прохождении тестового сигнала через измеряемый элемент и анализе полученных данных.
Проверка мультиметром
Мультиметром можно измерить почти все основные параметры, но точность этих результатов будет ниже, чем при использовании ESR-прибора. Измерение с помощью мультиметра можно представить следующим образом:
- Для увеличения точности результата конденсатор выпаивается из схемы.
- Мультиметр переключается на режим измерения ёмкости. На панели прибора этот режим изображается символом –|(– или Cx.
- Выбирается наиболее подходящий диапазон значения. Если при этом возникают трудности, устанавливается максимально возможное значение.
- Штекеры измерительного провода подключаются к разъёмам COM и VΩmA.
- Щупами дотрагиваются до ножек конденсатора. В случае необходимости соблюдают полярность.
- Мультиметр выдаст сигнал на элемент, измерит на нём напряжение и автоматически рассчитает ёмкость.
Если тестер выведет на экран значение OL или Overload, то это означает, что ёмкость слишком высока для измерения мультиметром или конденсатор пробит. Когда перед полученным результатом впереди будет стоять несколько нулей, предел измерения необходимо понизить.
Применение тестера
Если под рукой не окажется мультиметра, способного измерить ёмкость, то можно провести измерения подручными средствами. Для этого понадобятся резистор, блок питания с постоянным уровнем выходного сигнала и устройство, измеряющее напряжение. Методику измерения лучше рассмотреть на конкретном примере.
Пусть будет конденсатор, ёмкость которого неизвестна. Чтобы её узнать, понадобится выполнить следующие действия:
- С помощью тестера измеряется напряжение источника питания. Например, эта величина составила 9 вольт.
- Резистор 1 кОм последовательно соединяется с измеряемым конденсатором, образуя RC-цепочку.
- Конденсатор закорачивается, а RC-цепочка подключается к источнику питания.
- С помощью мультиметра замеряется напряжение цепи. Допустим, оно не изменилось и осталось равным девяти вольтам.
- Вычисляется значение, составляющее 95% от этого напряжения. Для нашего случая это значение равно 8,55 В.
- На следующем этапе включается секундомер, и одновременно убирается закоротка с конденсатора.
- Как только тестер покажет напряжение 8,55 В, секундомер останавливается. Пусть это время составит 60 секунд.
- Используя формулу 3*t = 3*R*C, нужно вычислить ёмкость. Для рассматриваемого примера она составит: C = (60/3)/1000 = 0,02 Ф или 20 000 мкФ.
Такой алгоритм измерения нельзя назвать точным, но общее представление о ёмкости радиоэлемента он вполне способен дать.
Схема самодельного прибора
Если есть познания в радиолюбительстве, можно собрать прибор для измерения ёмкости своими руками. Существует множество схемотехнических решений разного уровня сложности. Многие из них основаны на измерении частоты и периода импульсов в цепи с измеряемым конденсатором. Такие схемы сложны, поэтому проще использовать измерения, основанные на вычислении реактивного сопротивления при прохождении импульсов фиксированной частоты.
В основе схемы такого прибора лежит мультивибратор, частота работы которого определяется ёмкостью и сопротивлением резистора, подключёнными к выводам D1.1 и D1.2. С помощью переключателя S1 устанавливается диапазон измерения, то есть изменяется частота. С выхода мультивибратора импульсы поступают на усилитель мощности и далее на вольтметр.
Калибровка прибора проводится на каждом пределе с помощью эталонного конденсатора. Чувствительность устанавливается резистором R6.