Принцип работы и сферы применения полупроводниковых диодов

Применение полупроводниковых диодовПолупроводниковый диод является специальным устройством с одним р-n переходом, а также анодным и катодным выводом, которое предназначается для всевозможного изменения электрического сигнала. В большинстве случаев элемент изготовляется из кремния, хотя иногда используются и другие полупроводниковые материалы. Среди основных компонентов прибора — кристаллическая часть с р-n переходом.

Общая информация

Следует отметить, что современные полупроводниковые диоды создаются на основе германия или селена, как и более ста лет назад. Эти материалы обладают специфической структурой, которая позволяет применять элементы для модернизации схем и электроприборов, а также проводить преобразование разных токов.

В мире существуют разные типы таких изобретений, которые отличаются материалом изготовления, принципом действия и сферами применения. Особым спросом пользуются плоскостные и поликристаллические выпрямители, представляющие собой аналоги мостов. Они взаимодействуют посредством двух контактов.

Что касается плюсов приборов, то к ним следует отнести:

  1. Виды полупроводниковых диодовПолную взаимозаменяемость. Вышедший из строя элемент можно заменить любым другим с такими же свойствами и принципом работы. Особых требований к выбору точно такой же модели нет.
  2. Высокую пропускную способность.
  3. Дешевизну и доступность. Продаются полупроводниковые диоды в каждом магазине с электротехническими товарами. Стоимость такой продукции составляет от 50 рублей. К тому же их можно изъять своими руками из схем старых устройств.

Принцип работы

Сфера применения полупроводниковых диодовПонять принцип действия полупроводникового диода несложно. Все, что для этого понадобится — разбираться в базовых законах физики и знать, как происходят некоторые электрические процессы.

Изначально электроток действует на катод, что вызывает накаливание подогревательного элемента. В свою очередь, электродом испускаются электроны, а между двумя частями появляется электрическое поле.

Аноды с положительным зарядом воздействуют на электроны и притягивают их, а образованное поле выступает в качестве катализатора такой реакции. Также в этот момент формируется эмиссионный ток.

В двух электродах начинается формирование пространственно-отрицательного заряда, который может препятствовать протеканию электронов. Однако случается это лишь при снижении потенциала анода, в результате чего масса электронов не способна справиться с отрицательными элементами, что заставляет их перемещаться в обратном порядке, то есть электроны снова возвращаются к катоду.

Разновидности полупроводниковых диодов

Нередко показатели катодного тока держатся нулевой отметки — происходит это при воздействии частиц с зарядом минус. В результате образованное поле не заставляет электроны двигаться быстрее, а вызывает обратную реакцию — притормаживает их и заставляет вернуться обратно к катоду. В конечном итоге цепь размыкается, так как диод остается в запертом состоянии.

Устройство и конструкция

Разобравшись с принципом работы полупроводникового диода, можно начать изучать его устройство и конструкцию. Эти сведения понадобятся для дальнейшего использования диода и более глубокого понимания его рабочих свойств. В основе элемента лежат такие составляющие:

  1. Частые поломки полупроводниковых диодовВнешняя оболочка. В качестве корпуса используется небольшой баллон. Он полностью вакуумный и может быть стеклянным, металлическим или изготовленным из керамики.
  2. Внутри конструкции находится два электрода. Первый используется в качестве катода с накалом, обеспечивающим стабильную эмиссию электронов. В самом простом исполнении он являет собой нить с минимальной толщиной, способную накаливаться по мере подачи тока. Но в настоящее время активно распространяются модели косвенного накала. В отличие от классических типов они представлены в виде небольших цилиндров со специфическим слоем, где происходит испускание электронов.
  3. Что касается второго электрода, то он является анодом, принимающим электроны от катода. Элемент обладает плюсовым зарядом и цилиндрической формой. При изготовлении кристалла диода применяется кремний или германий.

Сферы применения и назначение

Сферы применения полупроводниковых диодов очень обширны. Сегодня без них тяжело представить работу большинства электрических приборов, и это неудивительно. Элементы задействуются для изготовления диодных мостов, а также следующих приспособлений:

  1. Устройств для защиты приборов от неверной полярности или перегрузок.
  2. Переключателей.
  3. Систем диодной искрозащиты.

Монтаж  полупроводниковых диодовЧто касается диодных мостов, то они представляют собой устройство из четырех, шести или двенадцати соединенных диодов (точное количество диодов определяется типом схемы, которая бывает 1-фазной, 3-фазной полумостовой или 3-фазной полномостовой). Система используется в качестве выпрямителя и зачастую устанавливается в генераторах автомобилей. Дело в том, что применение такого моста позволило существенно уменьшить устройство и сделать его более надежным.

Диодные детекторы состоят из диодов и конденсаторов, что позволяет осуществлять модуляцию с низкими частотами из разных сигналов, включая амплитудно-модулированный радиосигнал. Устройства незаменимы для функционирования различных бытовых приборов, например, телевизор или радиоприемник. Также с помощью полупроводниковых диодов можно обеспечить полноценную защиту от нарушения полярности при запуске съемных входов и перегрузках.

Задача переключателей на основе диодов заключается в коммутации высокочастотных сигналов. Для управления схемой используется постоянный электроток, разделение частот и подача сигнала к конденсаторам. Также на основе диодов создается мощная искрозащита, предотвращающая перегрузки и отклонения от допустимого предела напряжения.

Без применения диодов в современной электронике практически не обойтись. Поэтому очень полезно знать, как устроены, как работают и для чего предназначаются столь распространенные устройства.

Способы включения

На r-n переход воздействуют внешние напряжения, а также величина и полярность, которые влияют на конечные показатели электрического тока. При использовании прямого включения положительно заряженный проводник подключается к области р-типа, а отрицательный полюс к области n-типа. В таком случае события будут развиваться следующим образом:

  1. Какую роль выполняют полупроводниковые диодыИз-за подающего внешнего напряжения в переходе r-n-типа произойдет образование электрического поля, которое будет направлено в противоположную сторону от диффузионного поля внутри.
  2. После этого показатели напряжения поля заметно упадут, что сузит запирающий слой.
  3. Дальше большая часть электронов сможет перемещаться из одной области в другую, а затем возвращаться обратно.
  4. Параметры дрейфующего тока останутся неизменными, так как на них влияет лишь количество заряженных носителей в области r-n.

При росте обратного напряжения ток будет достигать наивысших показателей и перейдет в следующую стадию — насыщение. По мере повышения температуры растут параметры тока насыщения.

Распространенные неисправности

Порой полупроводниковые приборы перестают функционировать, что объясняется естественной амортизацией или завершением установленного эксплуатационного срока. Существуют и другие типы неисправностей, к которым следует отнести:

  1. Принцип работы и сферы применения полупроводниковых диодовПробой перехода. При таком явлении полупроводник становится обычным проводником, который не имеет установленных свойств и не удерживает электрический ток в установленном направлении. Решить проблему можно с помощью стандартного мультиметра, подающего звуковой сигнал и определяющего уровень сопротивления.
  2. Обрыв перехода. Представляет собой обратный процесс, в результате которого прибор превращается в изолятор. Электрический ток в таком случае пропускается только в одном направлении. Чтобы определить место обрыва, необходимо задействовать тестер с работающими щупами. Если эти элементы недостаточно качественные, то провести точную и правильную диагностику не удастся.
  3. Нарушение герметичности. Любая утечка является серьезной угрозой для нормальной работы полупроводниковых приборов.

Типы пробоев

Существует несколько типов пробоев, которые происходят при росте показателей обратного тока. К ним относятся:

  1. Тепловые пробои.
  2. Электрические пробои.

Первая опасность происходит при несбалансированной работе теплоотводящего элемента или при перегреве r-n-перехода из-за воздействия чрезмерно высоких показателей тока. Проблема теплового пробоя может привести к массе неприятных последствий, включая:

  1. Рост колебания атомов из состава кристалла.
  2. Взаимодействие электронов с проводимой областью.
  3. Стремительный рост температурных показателей.
  4. Деформационные процессы в структуре кристаллов.
  5. Полное повреждение радиокомпонента.

Принцип работы полупроводниковых диодовЧто касается электрического пробоя, то его нельзя назвать необратимым процессом, ведь при такой неприятности кристалл остается работоспособным. Поэтому вовремя принятые меры позволят сохранить диод от разрушения, а также продлить срок его службы.

В зависимости от типа электрические пробои бывают туннельными и лавинными. В первом случае неприятность развивается из-за прохождения чрезмерно высокого напряжения через узкие переходы, в результате чего электроны свободно проскакивают сквозь пробой. Образуются такие дефекты при появлении в молекулах большого количества примесей. Явление вызывает рост обратного тока и снижение напряжения.

Что касается лавинных пробоев, то они случаются из-за воздействия сильных полей, которые разгоняют носитель до пиковых показателей, а затем вышибают из атомов массу валентных электронов. Из-за этого электроны попадают в проводимую область, теряя свои свойства. Специфическое поведение, напоминающее по характеру схождение лавины, стало называться лавинным пробоем.

Без сомнений, современные электроприборы и различные радиотехнические изобретения не могут полноценно функционировать без полупроводниковых диодов. И чтобы продлить срок службы бытовой техники с этими элементами, необходимо знать о принципе их работы, основных неисправностях и способах борьбы с ними.

Оцените статью
(голосов: 65, среднее: 4.8 из 5)
Рекомендуем почитать
Комментарии к статье