Ионисторы — новый класс источников по функции близких к мощным конденсаторам, а фактически — занимающих нишу между конденсаторами и постоянными источниками тока. Что это такое, знают не все. Под ионисторами подразумевают суперконденсаторы, ультраконденсаторы. Международное обозначение EDLC — Electric double-layer capacitor, на электросхемах обозначается как R1.
Историческая справка
В 1957 году ранние версии суперконденсаторов разрабатывались инженерами в General Electric, но они не имели коммерческих приложений из-за низкой эффективности. В 1966 компания Standard Oil случайно при работе над топливными элементами открыла эффект двухслойного конденсатора, который позволял суперконденсатору эффективно функционировать. Компания не стала коммерциализировать изобретение, но получила лицензию на NEC. В 1978 она продала эту технологию как «суперконденсатор» для компьютеров. В СССР впервые EDLC были представлены в 1978 в публикации журнала Радио No 5 серии КИ1— 1с ёмкостью от 0, 2 до 50, 0 Ф.
Первые суперконденсаторы для мощного оборудования были созданы в 1982 PRI Ultracapacitor. Только в 1990 годах был достигнут прогресс в материалах и методах производства, который привёл к повышению производительности и снижению себестоимости ионисторов. Они продолжают развиваться и переходят в промышленную аккумуляторную технологию с использованием специальных электродов и электролита.
Назначение электронного устройства
Ионисторы (EDLC) — это электронные устройства, которые используются для хранения чрезвычайно больших количеств электрического заряда. Они также известны как суперконденсаторы, двухслойные конденсаторы или ультраконденсаторы. Вместо применения обычного диэлектрика, EDLC используют механизм для хранения электрической энергии — двухслойную ёмкость. Это означает, что они объединяют работу обычных конденсаторов с работой обычной батарей. Ёмкости, достигаемые с использованием этой технологии, могут достигать 12000 F. Для сравнения, ёмкость всей Земли составляет всего около 710 мкФ, что более чем в 15 миллионов раз меньше ёмкости EDLC.
В то время как обычный электростатический конденсатор может иметь высокое максимальное рабочее напряжение, обычное максимальное напряжение заряда EDLC лежит между 2, 5 и 2, 7 вольтами. EDLC — это полярные устройства, то есть они должны быть подключены к цепи правильно, подобно электролитным конденсаторам. Электрические свойства этих устройств, особенно их быстрое зарядное и разрядное время, очень перспективны для многих отраслей промышленности, где они могут полностью заменить батареи.
Конструкция и материалы ионисторов
Рассмотрим подробнее, что такое ионистор. Конструкция EDLC аналогична конструкции электролитических конденсаторов в том, что они состоят из двух фольговых электродов, электролита, сепаратора и фольги. Сепаратор зажат между электродами, фольга свёртывается или складывается в форму, обычно цилиндрическую или прямоугольную. Эта сложенная форма помещается в герметично закрытый корпус, пропитанный электролитом. Электролит в конструкции EDLC, а также электродов, отличается от электролита, используемого в обычных электролитических конденсаторах.
Чтобы сохранить электрический заряд, EDLC использует пористые материалы в качестве разделителей для хранения ионов в порах на атомном уровне. Наиболее распространённым материалом в современных EDLC является активированный уголь. Тот факт, что углерод не является хорошим изолятором, приводит к ограничению максимального рабочего напряжения до 3 В.
Активированный уголь не является идеальным материалом: носители заряда сопоставимы по размеру с порами в материале, а некоторые из них не могут проникать в более мелкие поры, что приводит к утечкам и уменьшению ёмкости хранения.
Одним из наиболее интересных материалов, используемых в исследованиях EDLC, является графен. Это вещество, состоящее из чистого углерода, расположенного в плоском листе толщиной всего один атом. Он чрезвычайно пористый, действует как ионная «губка». Плотность энергии, достигаемая с помощью графена в EDLC, сравнима с плотностями энергии, полученными в батареях.
Однако, несмотря на то что прототипы EDLC графена были сделаны в качестве доказательства будущей концепции, они дорогостоящие и их трудно производить в промышленных объёмах и это обстоятельство существенно тормозит использование данной технологии. Несмотря на это, EDLC из графена является наиболее перспективным кандидатом в будущей технологии ионисторов.
Достоинства и недостатки
Среди достоинств прибора следует выделить следующие:
- Время заряда. EDLC имеют время зарядки и разрядки, сравнимое со временем обычных конденсаторов. Из-за низкого внутреннего сопротивления можно добиться высоких токов заряда и разряда. Чтобы достичь полностью заряженного состояния батареи обычно уходит до нескольких часов. Например, как у батареи сотового телефона, в то время как EDLC могут зарядиться менее чем за две минуты.
- Удельная мощность. Конкретная мощность батареи или EDLC является мерой, используемой для сравнения различных технологий по выходной мощности, делённой на общую массу устройства. EDLC имеют удельную мощность в 5−10 раз большую, чем у батарей. Например, в то время как литий — ионные батареи имеют удельную мощность 1−3 кВт / кг, удельная мощность типичного EDLC составляет около 10 кВт / кг. Это свойство особенно важно в приложениях, требующих быстрого сброса энергии из устройств хранения.
- Жизнеспособность и безопасность цикла. Батареи EDLC более безопасны, чем обычные батареи при неправильном обращении. В то время как батареи могут взрываться из-за чрезмерного нагрева при коротком замыкании, EDLC не нагреваются так сильно по причине низкого внутреннего сопротивления.
- EDLC могут заряжаться и разряжаться миллионы раз и отличаются практически неограниченным сроком службы, в то время как батареи имеют цикл жизни в 500 раз и ниже. Это делает EDLC очень полезными в приложениях, где требуются частые хранения и выделения энергии.
- Продолжительность жизни EDLC составляет от 10 до 20 лет, при этом ёмкость за 10 лет снижается с 100% до 80%.
- Благодаря их низкому эквивалентному сопротивлению EDLC обеспечивают высокую плотность мощности и высокие токи нагрузки для достижения практически мгновенного заряда в секундах. Температурные характеристики также сильны, обеспечивая энергию при температурах до -40 C ° .
EDLC имеют некоторые недостатки:
- Одним из недостатков является относительно низкая удельная энергия. Конкретная энергия EDLC является мерой общего количества энергии, хранящейся в устройстве, делённой на её вес. В то время как литий — ионные батареи, обычно используемые в сотовых телефонах, имеют удельную энергию 100−200 Втч/кг, EDLC могут хранить только 5 Вт/кг. Это означает, что EDLC, обладающий такой же ёмкостью, как обычная батарея, будет весить в 40 раз больше.
- Линейное напряжение разряда. Например, батарея с номинальным напряжением 2,7 В, когда при 50%-м заряде все равно будет выводиться напряжение, близкое к 2,7 В. EDLC, рассчитанный на 2,7 В при 50%-м заряде, выдаёт ровно половину своего максимального заряда — 1,35 В. Это означает, что выходное напряжение упадёт ниже минимального рабочего напряжения устройства, работающего на EDLC, и оно должно будет отключиться, прежде чем использовать весь заряд в конденсаторе. Решением этой проблемы заключается в использовании DC-преобразователей. Однако этот подход создаёт новые трудности, такие как эффективность и шум.
- Они не могут использоваться в качестве постоянного источника питания. Одна ячейка имеет обычно напряжение 2,7 В и если требуется более высокое напряжение, ячейки должны быть соединены последовательно.
- Стоимость обычных EDLC в 20 раз выше, чем у Li-ion аккумуляторов. Однако она может быть уменьшена за счёт новых технологий и массового производства ионисторов.
Промышленное применение
Поскольку EDLC занимают область между батареями и конденсаторами, они могут использоваться в самых разных областях. Где применяют ионистор, можно предположить исходя из его назначения. Одним из интересных использований является хранение энергии в динамических тормозных системах в автомобильной промышленности. Заключается в использовании электрического генератора, который преобразует кинетическую энергию в электрическую энергию и сохраняет её в EDLC. Впоследствии эту энергию можно использовать повторно для обеспечения мощности для ускорения.
Другим примером являются приложения с малым энергопотреблением, где высокая пропускная способность не является обязательной, но важно обеспечить высокий жизненный цикл или быструю перезарядку. Такими приложениями являются фотографическая вспышка, MP3-плееры, статические запоминающие устройства, которым требуется источник постоянного напряжения низкой мощности для сохранения информации и т. д.
Возможные будущие приложения EDLC — это сотовые телефоны, ноутбуки, электромобили и все другие устройства, которые в настоящее время работают на батареях. Самым захватывающим преимуществом, с практической точки зрения, является их очень быстрая скорость перезарядки — это означало бы возможность заряжать электрический автомобиль в зарядном устройстве в течение нескольких минут до полной зарядки аккумулятора.
EDLC используются во многих приложениях управления питанием, требующих большого количества быстрых циклов зарядки/разрядки для краткосрочных потребностей в энергии. Некоторые из этих приложений применяются в таких сферах:
- стабилизация напряжения в системах пуска/останова;
- электронные дверные замки в случае сбоев питания;
- регенеративные тормозные системы;
- микросхема распределения;
- медицинское оборудование;
- аккумуляторы энергии;
- бытовая электроника;
- кухонные приборы;
- резервное копирование данных часов в реальном времени;
- резервная мощность;
- ветровая энергия:
- энергоэффективность и регулирование частоты;
- удалённое питание для датчиков, светодиодов, переключателей;
- резервная память;
- подача питания в режиме пакетной передачи.
Направления развития суперконденсаторов
Новые перспективные разработки ионисторов:
- Суперконденсаторы graphene Skeleton Technology станут ключевыми игроками EDLC. В новых испытаниях на транспортном флоте в Великобритании их используют для превращения дизельных машин в гибриды за счёт мощности от рекуперативного торможения. Система гибридных машин разработана Adgero и Skeleton Technologies под названием UltraBoost. Во время торможения устройство становится генератором, восстанавливая кинетическую энергию, которая, в противном случае была бы потеряна в виде тела. В основе этой технологии лежит банк из пяти мощных суперконденсаторов на основе графена, известных как SkelMod.
- Zap & Go, стартап в Великобритании, запускает новый тип зарядного устройства специально для деловых путешественников. Он использует суперконденсаторы графена для зарядки телефонов в течение пяти минут.
- Компания Eaton предлагает решения для суперконденсаторов размером с монету, больших ячеек, небольших цилиндрических ячеек и модулей. Например, его модуль Supercapacitor XLR 48V обеспечивает хранение энергии для мощных систем с частотным зарядом/разгрузкой в гибридных или электрических транспортных средствах, общественном транспорте, погрузочно-разгрузочной технике, тяжёлом оборудовании и морских системах. Модули XLR состоят из 18 отдельных суперконденсаторов Eaton XL60, предназначенных для обеспечения 48, 6 В и 166 F с сопротивлением 5 мА для включения в системы, требующие до 750 В.
- Суперконденсаторы Maxwell Technologies используются для хранения энергии с восстановительным торможением в системе метро Пекина. Китайская железная дорога Rolling Stock Corp. (CRRC — SRI) использует модули Maxwell 48 — V в двух наборах энергосберегающих устройств регенеративного торможения для линии No 8 системы, городской железнодорожной сети, которая проходит с севера на юг через столицу Китая. Модули Maxwell с 48 В обеспечивают длительный срок службы до 10 лет и быструю зарядку/разрядку. Vishay предлагает 220 EDLC ENYCAP с номинальным напряжением 2,7 В. Он может использоваться в нескольких приложениях, включая резервное питание, поддержку импульсной мощности, устройства хранения энергии для сбора энергии, источники питания микро UPS и восстановление энергии.
- Линейная технология предлагает LTC3350, резервный контроллер мощности, который может заряжать и контролировать серийный блок до четырёх суперконденсаторов. LTC3350 предназначенный для автомобильных и других транспортных приложений, предлагает следующие функции:
- Резервное копирование питания путём зарядки банка до четырёх суперконденсаторов в случае сбоя питания. Может работать с входным напряжением от 4,5 до 35 В и более 10 А заряда резервного тока.
- Балансировка и защита от перенапряжения для серии суперконденсаторов.
- Контроль напряжения, тока и температуры в системе.
- Внутренние балансиры напряжения конденсатора, которые устраняют необходимость в балансных резисторах.
Разработчики ионисторов стараются постоянно их модернизировать и повышать удельную емкость. Очевидно, что в будущем аккумуляторы полностью заменят суперконденсаторы. Результаты исследований калифорнийских ученых показали, что новый тип ионистров уже сегодня превосходит по функциональности свои аналоги в несколько раз.