Способы беспроводной передачи электричества на расстояние

Способы передачи энергии без проводовПри своем появлении переменный электрический ток казался фантастикой. Его изобретатель, гениальный физик Никола Тесла, еще на рубеже XIX и XX столетий исследовал проблему беспроводной передачи электричества на большие расстояния. Пока что эта проблема решена не до конца, но полученные результаты обнадеживают.

Ультразвук для передачи энергии

Любая волна переносит энергию, в том числе и звуковые волны высокой частоты. Существует три подхода к беспроводной передаче электричества:

  • передача электрической энергии через преобразование в другой вид энергии в источнике и обратное преобразование в электричество в приемном устройстве;
  • создание и использование альтернативных проводников электричества (плазменных каналов, столбов ионизированного воздуха и т. д. );
  • использование токопроводящих свойств литосферы Земли.

Беспроводное электричествоМетод применения ультразвука относится к первому подходу. В источнике ультразвука особого вида при подаче электропитания возникает направленный пучок звуковых волн высокой частоты. При их попадании на приемник энергия звуковых волн преобразуется в электрический ток.

Максимальное расстояние передачи электроэнергии без проводов составляет 10 метров. Результат получен в 2011 году представителями университета Пенсильвании во время презентации в рамках выставки «The All Things Digital». Этот метод не считается перспективным из-за нескольких его недостатков: низкий КПД, малое получаемое напряжение и ограничение на силу излучения ультразвука санитарными нормами.

Применение электромагнитной индукции

Хотя большинство людей даже и не подозревает об этом, этот метод используется уже очень давно, практически с самого начала использования переменного тока. Самый обычный трансформатор переменного тока является простейшим устройством беспроводной передачи электроэнергии, только расстояние передачи при этом очень маленькое.

Первичная и вторичная обмотки трансформатора не соединены в одну цепь, а при протекании переменного тока в первичной обмотке возникает электроток во вторичной. Перенос энергии при этом происходит посредством электромагнитного поля. Поэтому этот метод беспроводной передачи электроэнергии использует преобразование энергии из одного вида в другой.

Передача электроэнергии без проводовУже разработаны и успешно используются в быту ряд приборов, работа которых основана на этом методе. Это и беспроводные зарядные устройства для мобильных телефонов и других гаджетов, и бытовые электроприборы с низким потреблением электроэнергии при работе (компактные камеры видеонаблюдения, всевозможные датчики и даже телевизоры с жидкокристаллическими экранами).

Многие специалисты утверждают, что электротранспорт будущего будет использовать беспроводные технологии зарядки аккумуляторов или получения электроэнергии для движения. В дороги будут вмонтированы индукционные катушки (аналоги первичной обмотки трансформатора). Они будут создавать переменное электромагнитное поле, которое при проезде транспорта над ним вызовет течение электротока во встроенной приемной катушке. Первые эксперименты уже проведены и полученные результаты вызывают сдержанный оптимизм.

Из достоинств такого способа можно отметить:

  • высокий КПД для небольших расстояний (порядка нескольких метров);
  • простота конструкции и освоенная технология применения;
  • относительная безопасность для здоровья людей.

Недостаток метода — малое расстояние, на котором передача энергии эффективна — существенно снижает область применения беспроводного электричества на основе электромагнитной индукции.

Использование различных микроволн

Вариант беспроводной передачи энергииЭтот метод также основан на преобразовании разных видов энергии. В роли переносчика энергии служат электромагнитные волны сверхвысокой частоты. Впервые этот метод описал и практически реализовал в своей установке японский физик и радиотехник Хидэцугу Яги в двадцатых годах прошлого века. Частота радиоволн для передачи электроэнергии без проводов находится в диапазоне от 2,4 до 5,8 ГГц. Уже протестирована и получила положительные отзывы экспериментальная установка, которая одновременно раздает Wi-Fi и запитывает слабомощные бытовые электроприборы.

Лазерный луч также является электромагнитным излучением, но с особым свойством — когерентностью. Оно уменьшает потери энергии при передаче и тем самым повышает КПД. Из достоинств можно отметить следующие:

  • возможность передачи на большие расстояния (десятки километров в атмосфере Земли);
  • удобство и простота установки для маломощных приборов;
  • наличие визуального контроля процесса передачи — лазерный луч виден невооруженным глазом.

Лазерный метод имеет и недостатки, а именно: сравнительно низкий КПД (45−50%), потери энергии из-за атмосферных явлений (дождь, туман, пылевые тучи) и необходимость нахождения передатчика и приемника в поле видимости.

Перспективы солнечной энергетики

Перспективы солнечной энергетикиИнтенсивность солнечного света за пределами земной атмосферы в несколько десятков раз выше, чем на поверхности Земли. Поэтому в перспективе, как считают футурологи, солнечные электростанции будут располагаться на околоземной орбите. А передача накопленной электроэнергии, по их мнению, будет производиться без токоведущих проводов. Будет разработан и применен способ передачи, копирующий разряды молний, тем или иным способом планируется производить ионизацию воздуха. И первые опыты в этом направлении уже проведены. Этот метод основан на создании альтернативных беспроводных проводников электротока.

Полученное таким способом с околоземной орбиты беспроводное электричество носит импульсивный характер. Поэтому для его практического применения нужны мощные и недорогие конденсаторы, а также необходимо будет разработать способ их постепенной разрядки.

Наиболее эффективный метод

Перспективы беспроводной энергетикиПланета Земля является огромным конденсатором. Литосфера, в основном, проводит электричество за исключением небольших ее участков. Существует теория, что беспроводная передача энергии может осуществляться через земную кору. Суть такова: источник тока надежно контактирует с поверхностью земли, переменный ток определенной частоты перетекает с источника в кору и распространяется во всех направлениях, через определенные промежутки в земле размещаются приемники электротока, с которых он передается потребителям.

Суть теории в том, чтобы принимать и использовать ток только одной заданной частоты. Как в радиоприемнике настраивается частота приема радиоволн, так и в таких электроприемниках будет регулироваться частота принимаемого тока. Теоретически таким методом возможно будет передавать электроэнергию на очень большие расстояния, если частота переменного тока будет низкой, порядка нескольких Гц.

Перспективы беспроводной передачи электричества

Теория беспроводной энергетикиВ близкой перспективе ожидается массовое внедрение в быт системы PoWiFi, состоящей из роутеров с функцией передачи электроэнергии на несколько десятков метров, и бытовых приборов, питание которых осуществляется за счет приема электричества из радиоволн. Такая система в данный момент активно тестируется и готовится к широкому использованию. Детали не разглашаются, но по имеющейся информации «изюминка» заключается в том, что используется синхронизация электромагнитных полей источника и приемника беспроводного электричества.

В очень отдаленной перспективе рассматривается вариант отказа от использования традиционных электростанций в глобальном масштабе — будут использоваться солнечные станции на околоземной орбите, преобразующие энергию солнечного света в электрическую. На поверхность планеты электричество предположительно передаваться будет через ионизированный воздух или плазменные каналы. А на самой земной поверхности исчезнут обычные линии электропередачи, их место займут более компактные и эффективные системы передачи электричества через литосферу.

Оцените статью
(голосов: 69, среднее: 4.8 из 5)
Рекомендуем почитать
Комментарии к статье