Как определить мощность электродвигателя и расчет его эффективности

Выбор электродвигателейЭлектрический двигатель представляет собой электромеханическое устройство, основанное на электромагнетизме, позволяющем преобразовывать электрическую энергию, например, в рабочую или механическую энергию. Этот процесс является обратимым и может быть использован для выработки электроэнергии. Однако все эти электрические машины являются обратимыми и могут быть «двигателем» либо «генератором» в четырех квадрантах плоскости с крутящим моментом.

Ранние разработки

Параметры электродвигателяВ 1821 году, после открытия феномена связи электричества и магнетизма, датским химиком Эрстедом, теоремы Ампера и закона Био — Савара, английский физик Майкл Фарадей построил два аппарата, которые он назвал «электромагнитное вращение»: непрерывное круговое движение магнитной силы вокруг провода — это фактическая демонстрация первого электродвигателя.

В 1822 году Питер Барлоу построил то, что можно считать первым электродвигателем в истории: «колесо Барлоу». Это устройство представляет собой простой металлический диск, нарезанный звездой, и концы которого погружаются в чашку, содержащую ртуть, обеспечивающая текущий поток. Однако он создает только силу, способную ее поворачивать, не допуская ее практического применения.

Первый экспериментально используемый коммутатор был изобретен в 1832 году Уильямом Стерджоном. Первый двигатель постоянного тока, изготовленный с целью продажи, был изобретен Томасом Давенпортом в 1834 году и запатентован в 1837 году. Эти двигатели не испытали никакого промышленного развития из-за высокой стоимости батарей в то время.

Электродвигатель с DC

Правила выбора электродвигателяКоммутируемый аппарат постоянного тока имеет набор вращающихся обмоток, намотанных на якорь, установленный на вращающемся валу. На валу также имеется коммутатор, долговременный поворотный электрический выключатель, который периодически меняет поток тока в обмотках ротора при вращении вала. Таким образом, каждый мостовой мотор постоянного тока имеет переменный ток, проходящий через вращающиеся обмотки. Ток протекает через одну или несколько пар щеток, которые несут на коммутаторе; щеточки соединяют внешний источник электроэнергии с вращающейся арматурой.

Вращающаяся арматура состоит из одной или нескольких катушек проволоки, намотанной вокруг ламинированного ферромагнитного сердечника. Ток от щетки протекает через коммутатор и одну обмотку якоря, делая его временным магнитом (электромагнитом). Магнитное поле, создаваемое якорем, взаимодействует со стационарным магнитным полем, создаваемым либо PM, либо другой обмоткой (полевой катушкой), как часть каркаса двигателя.

Сила между двумя магнитными полями имеет тенденцию вращать вал двигателя. Коммутатор переключает питание на катушки при повороте ротора, удерживая магнитные полюса, от когда-либо полностью совпадающего с магнитными полюсами поля статора, так что ротор никогда не останавливается (как стрелка компаса), а скорее вращается пока есть питание.

Хотя большинство коммутаторов являются цилиндрическими, некоторые из них представляют собой плоские диски, состоящие из нескольких сегментов (как правило, не менее трех), установленных на изоляторе.

Большие щетки желательны для большей площади контакта щетки, для максимизации мощности двигателя, но небольшие щеточки желательны для малой массы, чтобы максимизировать скорость, с которой двигатель может работать, без чрезмерного отскока и искрения щеток. Более жесткие пружины для щеток также могут использоваться для создания щеток заданной массы на более высокой скорости, но за счет больших потерь из-за трения и износа ускоренной щетки и коммутатора. Поэтому конструкция электродвигателя постоянного тока влечет за собой компромисс между выходной мощностью, скоростью и эффективностью/износом.

Конструкция двигателей с DC:

  • Схема арматуры — обмотка, в ней переносится ток нагрузки, который может быть неподвижной или вращающейся частью двигателя или генератора.
  • Полевая схема — набор обмоток, создающих магнитное поле, так что электромагнитная индукция может существовать в электрических машинах.
  • Коммутация. Механическая техника, в которой может быть достигнута ректификация, или благодаря чему может быть получен постоянный ток.

Существует четыре основных типов электродвигателей постоянного тока:

  1. Электродвигатель с шунтовой намоткой.
  2. Электродвигатель постоянного тока.
  3. Комбинированный двигатель.
  4. Двигатель PM.

Базовые расчетные показатели

Показатели электродвигателяО том, как узнать мощность электродвигателя в статье будет показано далее, на примере с исходными данными.

Хороший научный проект не останавливается на конструировании силового аппарата. Очень важно произвести расчет мощности электродвигателя и различные электрические и механические параметры вашего аппарата и рассчитать формулу мощности электродвигателя используя неизвестные значения и полезные формулы.

Для расчета электродвигателя мы будем использовать Международную систему единиц (СИ). Это современная метрическая система, официально принятая в электротехнике.

Одним из важнейших законов физики является основной закон Ома. Он утверждает, что ток через проводник прямо пропорционален приложенному напряжению и выражается как:

I = V / R

где I — ток, в амперах (A);

V — приложенное напряжение, в вольтах (V);

R — сопротивление, в омах (Ω).

Эта формула может использоваться во многих случаях. Вы можете рассчитать сопротивление вашего двигателя, измерив, потребляемый ток и приложенное напряжение. Для любого заданного сопротивления (в двигателях это в основном сопротивление катушки), эта формула объясняет, что ток можно контролировать приложенным напряжением.

Потребляемая электрическая мощность двигателя определяется по следующей формуле:

Pin = I * V

где Pin — входная мощность, измеренная в ваттах (Вт);

I — ток, измеренный в амперах (A);

V — приложенное напряжение, измеренное в вольтах (V).

Как узнать выходную мощность

Двигатели как предполагается, выполняют какую-то работу, и два важных значения, которые определяют, насколько он мощный. Это скорость и сила поворота двигателя. Выходная механическая мощность двигателя может быть рассчитана по следующей формуле:

Pout = τ * ω

где Pout — выходная мощность, измеренная в ваттах (Вт);

τ - момент силы, измеренный в метрах Ньютона (N • м);

ω - угловая скорость, измеренная в радианах в секунду (рад / с).

Легко рассчитать угловую скорость, если вы знаете скорость вращения двигателя в об / мин:

ω = rpm * 2 * П / 60

Применение мощных электродвигателейгде ω - угловая скорость (рад / с);

об / мин — скорость вращения в оборотах в минуту;

П — математическая константа (3.14);

60 — количество секунд в минуте.

Если двигатель имеет 100% КПД, вся электрическая энергия преобразуется в механическую энергию. Однако таких двигателей не существует. Даже прецизионные малые промышленные двигатели, имеют максимальную эффективность 50—60%.

Измерение момент силы двигателя является сложной задачей. Для этого требуется специальное дорогостоящее оборудование. Но это возможно сделать и самому обладая специальной информацией и формулами.

Показатели механической эффективности

Эффективность двигателя рассчитывается как механическая выходная мощность, деленная на электрическую входную мощность:

E = Pout / Pin

следовательно,

Pout = Pin * E

после подстановки мы получаем:

Т * ω = I * V * E

Т * rpm * 2 * П / 60 = I * V * E

и формула для расчета момента силы будет равна:

Т = (I * V * E * 60) / (об / мин * 2 * П)

Преимущества мощного электродвигателяЧтобы определить мощность двигателя необходимо подключить его к нагрузке, для образования момента силы. Измерьте ток, напряжение и об / мин. Теперь вы можете рассчитать момент силы для этой нагрузки с этой скоростью, предполагая, что вы знаете эффективность двигателя.

Оценочная 15-процентная эффективность представляет собой максимальную эффективность двигателя, которая происходит только с определенной скоростью. Эффективность может быть какая угодно между нулем и максимумом; в нашем примере ниже 1000 об / мин может быть неоптимальная скорость, поэтому для расчетов вы можете использовать 10% КПД (E = 0,1).

Пример: скорость 1000 об / мин, напряжение 6 В, а ток 220 мА (0,22 А):

Т = (0,22 * 6 * 0,1 * 60) / (1000 * 2 * 3,14) = 0,00126 Н • м

Как результат, обычно он выражается в миллиньютонах умноженные на метры (мН • м). 1000 мН • м в 1 Н • м, поэтому рассчитанный крутящий момент составляет 1,26 мН • м. Его можно было бы преобразовать далее в (г-см), умножив результат на 10,2, и. е. Крутящий момент составляет 12,86 г-см.

В нашем примере входная мощность двигателя составляет 0,22 A x 6 V = 1,32 Вт, механическая мощность выхода составляет 1000 об / мин x 2×3,14×0,00126 Н • м / 60 = 0,132 Вт.

Линейные двигателиМомент силы двигателя изменяется со скоростью. При отсутствии нагрузки максимальная скорость и нулевой крутящий момент. Нагрузка добавляет механическое сопротивление. Мотор начинает потреблять больше тока для преодоления этого сопротивления, и скорость уменьшается. Когда это происходит, момент силы максимален.

Насколько точен расчет крутящего момента, определяется следующим образом. В то время как напряжение, ток и скорость могут быть точно измерены, эффективность двигателя может быть неправильной. Это зависит от точности вашей сборки, положения датчика, трения, выравнивания моторов и осей генератора и т. д.

Скорость, крутящий момент, мощность и эффективность не являются постоянными значениями. Обычно производитель предоставляет следующие данные в специальных таблицах.

Линейные двигатели

Линейный двигатель по существу является асинхронным двигателем, ротор которого «разворачивается», так что вместо создания вращательной силы вращающимся электромагнитным полем, он создает линейную силу вдоль своей длины путем установки электромагнитного поля смещения.

Акустический шум

Акустический шум и вибрации электродвигателей обычно возникает из трех источников:

  • механические источники (например, из-за подшипников);
  • аэродинамические источники (например, благодаря вентиляторам, установленным на валу);
  • магнитные источники (например, из-за магнитных сил, таких как силы Максвелла и магнитострикции, действующие на структуры статора и ротора).

Последний источник, который может отвечать за шум электродвигателей, называется электрически-возбужденным акустическим шумом.